Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants
نویسندگان
چکیده
Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes-conversion and deposition coatings-while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches are required to leverage the benefit of Mg-based alloys. Hybrid treatments combining innovative biomimetic coating and mechanical processing would be regarded as a potentially promising way to tackle the corrosion problem. Synergetic cutting-burnishing integrated with cryogenic cooling may be another encouraging approach in this regard. More studies focusing on rigorous testing, evaluation and characterisation are needed to assess the efficacy of the methods.
منابع مشابه
Microhardness and In Vitro Corrosion of Heat-Treated Mg–Y–Ag Biodegradable Alloy
Magnesium alloys are promising candidates for biodegradable medical implants which reduce the necessity of second surgery to remove the implants. Yttrium in solid solution is an attractive alloying element because it improves mechanical properties and exhibits suitable corrosion properties. Silver was shown to have an antibacterial effect and can also enhance the mechanical properties of magnes...
متن کاملModification of Anodized Mg Alloy Surface By Pulse Condition for Biodegradable Material
Magnesium is used implant material potentially for non-toxicity to the human body. Due to the excellent bio-compatibility, Mg alloys is applied to implants avoiding removal second surgery. However, it is found commercial magnesium alloys including aluminum has low corrosion resistance, resulting subcutaneous gas bubbles and consequently the approach as permanent bio-materials. Generally, Alumin...
متن کاملBiodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases
Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg....
متن کاملBiodegradable Orthopedic Magnesium-Calcium (MgCa) Alloys, Processing, and Corrosion Performance
Magnesium-Calcium (Mg-Ca) alloy has received considerable attention as an emerging biodegradable implant material in orthopedic fixation applications. The biodegradable Mg-Ca alloys avoid stress shielding and secondary surgery inherent with permanent metallic implant materials. They also provide sufficient mechanical strength in load carrying applications as opposed to biopolymers. However, the...
متن کاملEffect of Hydroxyapatite on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y Alloy
Mg-Zn-Y alloys with a long period stacking ordered (LPSO) phase are potential candidates for biodegradable implants; however, an unfavorable degradation rate has limited their applications. Hydroxyapatite (HA) has been shown to enhance the corrosion resistance of Mg alloys. In this study, Mg97Zn₁Y₂-0.5 wt% HA composite was synthesized and solution treated at 500 °C for 10 h. The corrosion behav...
متن کامل